岩洞湖ローム土の水浸時における圧縮変形挙動に関する研究 Study on compressive deformation behavior of Gando-lake loam under water

> 宫 隆之*,金山素平** Miya T.* and Kanayama M**

1. まえがき

盛土が降雨や湛水による水浸を受けると圧縮沈下を 生じる場合がある.この変形は構造物の安定性に関わ る重要な問題である.不飽和土の浸水に伴う沈下現象 はコラプスと呼ばれる.コラプスを発生せるだけの外 力が作用していないと、土は弾性的挙動を示し、水浸 による有効応力の減少分だけ膨張する.

本研究では、実際にコラプスが発生している岩手県 盛岡市にある岩洞湖のローム土の圧縮特性および水浸 が圧縮性に与える影響と、竹廃材を利用した地盤改 良効果の検討を行う.

2. 実験材料・実験方法

1.1 実験材料

実験に用いた試料は、岩手県盛岡市の岩洞ダムで採土したロームであり、その物理的特性を Table1 に示している. 先行研究により、岩洞湖ロームの物理的数値は明らかにされている. $\rho_s=2.68\sim2.78 \mathrm{g/cm^3}$ 、 $\mathrm{wL}=55.0\sim86.4\%$ 、 $\mathrm{wP}=39.4\sim52.1\%$ であり、今回実験に用いる土は概ね過去のデータの範囲内にある. また、岩洞湖ロームは Fig.1 に示すように、法面等で波浪浸食による崩壊が問題になっている. この崩壊は、現地地形の勾配の緩急に関係なく、満水面付近に浸食が発生していることが確認されている.

Fig.1 岩洞湖の浸食の様子

Table1 岩洞湖ロームの物理的特性 +粒子窓度 o (%) 2 707

土粒子密度 ρ s	(%)	2.707
液性限界 wL	(%)	59.0
塑性限界 W _P	(%)	46.6
塑性指数 I _P		12.4
自然含水比 W _n	(%)	54.9
礫分	(%)	4.0
砂分	(%)	43.5
シルト分	(%)	33.9
粘土分	(%)	18.6
最大粒径	(mm)	9.5
D ₆₀	(mm)	0.146
D ₅₀	(mm)	0.065

1.2 実験方法

最適含水比と最大乾燥密度の算出のため、3 層 25 回の突き固めによる土の締固め試験を行った。また、締固めた試料から直径 6cm、高さ 2cm の供試体を作成し、圧縮試験を行った。圧縮圧力は次の 8 段階、p=9.8, 19.6, 39.2, 78.5, 157, 314, 628, 1256kN/m² であり、載荷時間は 24 時間である。

^{*}岩手大学大学院総合科学研究科, **岩手大学農学部

^{*} Graduate School of General Sciences, Iwate University, ** Faculty of agriculture, Iwate University キーワード: 竹繊維、コラプス、締固め、地盤改良、水浸

併せて、水浸による圧縮性の変化を調べるため、各段階の載荷時間終了後、圧力を変えず に水浸容器に注水を行った、なお、供試体の含水比は締固め試験で求めた最大含水比付近に 調整して試験を行った.

3. 結果・考察

Fig.2 は岩洞湖ロームの締固め曲線を示したものであ る. この結果から、岩洞湖ロームの最適含水比は 47.5%, 最大乾燥密度は 1.128g/cm³であった.

供試体について, 各荷重段階において水浸させた時の e-logp 曲線の変化を Fig.3 に、水浸による圧縮量の変化 を Fig.4 に示す. Fig.3 より、供試体の圧縮時において水 浸によって、コラプスが発生していることが確認でき る. また, Fig.4 から水浸後 2~3 秒後にコラプスが発生 しており、その後、再び圧縮が進行することが確認でき る. このことから、岩洞湖ロームの耐水性が著しく低いと 判断できる. 岩洞ダムの継続的な理由を考慮すると, 水浸 による変形を軽減する等の迅速な対策が必要であると考え られる.

4. まとめ

本研究においては、締め固めた岩洞湖ロームの圧縮性 や、水浸による圧縮性の変化を実験的に検討した. 実験結 果から、水浸後のコラプスの発生や、水浸による土の脆弱化が確認できた.

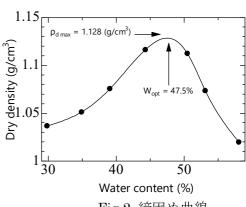


Fig.2 締固め曲線

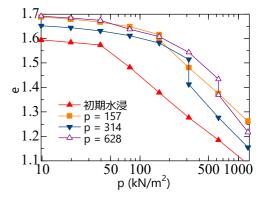


Fig.3 e-logp 曲線

課題として、この水浸によるコラプスの発生を軽減することが必要である. その方法とし て竹繊維を利用した土材料の補強を検討している. 現段階では、土に 2mm 以上の長さの竹 繊維を土の乾燥質量に対して3%混合することで強度が増加することが明らかになっている. 今後は、竹繊維を混合し補強した混合ロームを使用することで、圧縮変形特性および水浸時 の圧縮性の変化を検討する予定である.

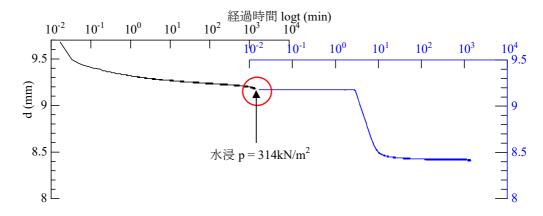


Fig.4 水浸による圧縮量の変化